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A modification of the model of Brooks for a non-steady-state continuous emulsion polymerization 
reaction has been examined to ascertain whether it permits the possibility of (a) periodic fluctuations 
in rate of polymerization in the vicinity of the steady state, and (b) sustained fluctuations in rate of 
polymerization in any physically-attainable condition. We conclude that neither of these possibilities 
is realizable in reaction systems which conform to the model which has been considered. Nor are 
sustained oscillations possible in reaction systems which conform to certain variants of the model. 

INTRODUCTION 

Increasing interest is being shown in the use of continuous 
reactors for the production of polymers by emulsion poly- 
merization. As a consequence, attempts are being made to 
understand the main features of continuous emulsion poly- 
merization reactions in terms of those ideas which have 
proved useful in understanding the behaviour of reactions 
carried out in batch reactors. 

In general, attempts to understand the behaviour of con- 
tinuous emulsion polymerization reactions have been con- 
fined to consideration of the steady-state behaviour of the 
reaction system 1'2. Transient effects which arise during the 
start-up stage of the reaction have not received such close 
attention. This is hardly surprising, since the proportion of 
the total output of polymer which is produced during the 
start-up period is usually small. Some experimental 
studies3'4have indicated that, in certain circumstances, the 
ultimate behaviour of continuous emulsion polymerization 
reactions can be such that the rate of polymerization persis- 
tently oscillates. Apart from the inherent interest in the 
possibility of this phenomenon, it is also of considerable 
practical interest, in that, were such periodic fluctuations 
in polymerization rate to occur, they might well be accom- 
panied by similar periodic fluctuations in the properties of 
the polymer which is produced. 

The origin of these persistent fluctuations in polymeriza- 
tion rate is unclear. Gerrens and Kuchner I have pointed out 
that variations in the rate of feed of the reactants could be 
one cause, but it should clearly be possible to eliminate 
fluctuations arising from this cause by carefully controlling 
the feed rates of the reactants. Variations arising from this 
kind of cause are not the subject of this paper. Our purpose 
is to examine a plausible model for a continuous emulsion 
polymerization in order to ascertain whether the model 
allows the inherent possibility of periodic fluctuations in 
polymerization rate. The model which has been considered 
is essentially that proposed by Brooks s for non-steady-state 
emulsion polymerization, with some additional assumptions 
noted below. Some experimental evidence in support of 
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some of the supposed conclusions drawn from the model 
has been presented in a recent paper by Brooks, Kropholler 
and Purt 5 

MODEL CONSIDERED HERE 

The emulsion polymerization reaction is assumed to be 
taking place in a single well-stirred reactor, so that effects 
arising from macroheterogeneity within the reaction system 
can be neglected. Reactants are assumed to be fed into the 
reactor at steady rates, and the reaction product is being 
removed at a steady rate, such that the volume of reactants 
in the reactor remains constant. The monomer and surfac- 
tant solution are assumed to be fed in separately from the 
initiator solution, so that polymer particles can be assumed 
to be absent from the feed. The monomer is assumed to be 
only sparingly soluble in water, and the surfactant to be 
present in the initial feed at a concentration above its 
critical micelle concentration. Thus particles are assumed to 
be formed exclusively by micellar nucleation; complications 
arising from the simultaneous occurrence of homogeneous 
nucleation are ignored. The monomer is assumed to be 
completely miscible with its polymer, and to be present in 
sufficient quantity so as to ensure that an excess of monomer 
is present as droplets at all stages of the reaction. 

All these criteria were probably satisfied in the experi- 
ments reported by Brooks, Kropholler and Putt 4 for the 
emulsion polymerization of styrene in a continuous stirred 
reactor at 50°C. In particular, the results reported for peak 
and steady-state conversions suggest that in most of the 
experiments excess monomer was present as a droplet phase 
throughout the entire course of the reaction. The signifi- 
cance of this observation is that the concentration of 
monomer at the reaction locus probably remained constant 
throughout the reaction, and consequently any periodic 
fluctuations in reaction rate which were observed cannot 
have been due to fluctuations in the concentration of mono- 
mer at the reaction locus. Thus in order to account for 
periodic fluctuations in polymerization rate, it is necessary 
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that the model should allow the possibility of periodic 
fluctuations in either (i) particle number or (ii) average 
number of propagating radicals per reaction locus. The 
assumption is made here that the average number of propa- 
gating radicals per reaction locus does not fluctuate signifi- 
cantly as the reaction proceeds, and so the enquiry reduces 
to a consideration of the possibility of periodic fluctuation 
in particle number. It is recognized, however, that the 
assumption of a constant average number of propagating 
radicals per reaction locus may not in fact accord with 
reality. 

According to Brooks, Kropholler and Purr 4, the Brooks 
model does permit the possibility of oscillations in poly- 
merization rate. The root cause is said to be that the incom- 
ing surfactant micelles participate in two competing pro- 
cesses, namely, the nucleation of new particles and 
dissolution into the aqueous phase as monomolecular 
surfactant molecules. The tendency for the second of these 
processes to occur arises because the concentration of 
monomolecular surfactant has been reduced below its 
critical micelle concentration owing to the removal of sur- 
factant molecules by adsorption at the surface of older 
particles which are growing in the reactor. If the rate of 
increase of particle surface area due to growth is greater than 
the rate at which particle surface area is lost from the reac- 
tion system by efflux of particles from the reactor, then 
the adsorption area available to surfactant molecules in the 
reactor will increase, and the rate of production of new 
particles will be expected to decrease. The rate of poly- 
merization would then fall. It is postulated that, in some 
cases, the reduction in particle number may be such that the 
particle number 'undershoots' the steady-state value, and 
then subsequently increases to, and remains at, the steady- 
state value. In other cases, the particle number can continue 
to oscillate with respect to time. Brooks states that it may 
be difficult to distinguish in practice between these two 
types of behaviour. It is not entirely clear what are the 
factors which determine whether or not a steady-state is 
eventually achieved. However, if sustained oscillations do 
occur, their cause is attributed to a feedback effect which 
the products of the reaction (the particles) have upon the 
reaction process. 

ANALYSIS OF THE MODEL 

Differential equations for particle number and micelle 
number 

For convenience, we use the same notation as Brooks s. 
The model gives the following expression for the rate of 
change with time of the number of particles (N) contained 
in unit volume of aqueous phase of the reaction system: 

dN k2RiN m N 

d t - k 2 N m  +k3 N ~ (1) 

where N m is the number of surfactant micelles per unit 
volume of aqueous phase in the reaction system;Ri is the 
rate of acquisition of radicals from the aqueous phase by 
both the particles and the micelles which are present in unit 
volume of aqueous phase; k 2 and k 3 are rate coefficients for 
the processes of radical capture by micelles and by particles, 
respectively; t is time of reaction; and T is the mean resi- 
dence time of the reactants in the reactor. This equation 
merely asserts that the overall rate of  accumulation of new 

particles is equal to the difference between the rate of for- 
mation of new particles by micellar nucleation and the rate 
of loss of particles by efflux from the reactor. The rate of 
acquisition of radicals by particles and micelles is assumed 
to be first order in the concentration of the respective 
species. The rate coefficients k2 and k 3 are assumed to be 
proportional to the respective areas of a single micelle and 
a single particle. Thus k 3 will depend upon the distribution 
of particle sizes which is present in the reactor at any instant, 
and will therefore be time-dependent during non-steady 
operation. However, to the extent that we are concerned 
with the behaviour of the reaction system in the vicinity of 
the steady state, we make the assumption that any variations 
in k 3 which occur are of negligible significance. Again, it 
must be recognized that this assumption may not be 
justified. 

The rate of change with time of the number of micelles 
(Nm) contained in unit volume of aqueous phase of the 
reaction system is assumed to be given by the balance of con- 
tributions from four processes: 

(i) entry of micelles into the reaction system from the 
surfactant feed solution; 

(ii) removal of micelles from the reaction system by 
efflux; 

(iii) dissociation of micelles into monomolecular surfac- 
tant molecules; 

(iv) conversion to particles by micellar nucleation. 
The following equation is obtained for the overall rate of 
accumulation of micelles in unit volume of the aqueous 
phase of the reaction system: 

dNm _ Nmo Nm k2RiNm 
klNm (2) 

dt T T k2N m + k3 N 

where Nmo is the number of  surfactant micelles in unit 
volume of the surfactant solution which is being fed into the 
reaction system; and k I is the rate coefficient for the dis- 
sociation of micelles into monomolecular surfactant mole- 
cules. The four factors on the right-hand side of equation 
(2) arise, respectively, from the processes (i)-(iv) listed 
above. It should be noted that the process of micelle dis- 
sociation is assumed to be first order in number of  micelles. 
This is equivalent to the assumption that miceUar dissocia- 
tion is a quasi-unimolecular process. We also note that 
equation (2) assumes the rate of  formation of micelles from 
monomolecular surfactant species to be negligible; this is a 
reasonable assumption if the concentration of monomolecu- 
lar species in the aqueous phase is significantly below the 
critical micelle concentration. 

We now put r = t iT (so that r is the time of reaction rela- 
tive to the mean residence time), a = k3/k2, (3 = 1 + k i T  , and 
~/= RiT. The equations (1) and (2) then become, respec- 
tively: 

dN 3,N m 

dr N m + aN 
- -  - N  ( 3 )  

and 

dN m ~/N m 
- Nmo - ~tV m (4) 

dr Nm + aN 

Thus for the model assumed, the variation of N with t during 
the non-steady state is determined by the solution of these 
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two simultaneous non-linear first-order ordinary differential 
equations for N and Arm. Unfortunately, no general solution 
to this pair of simultaneous differential equations is readily 
available. However, there is a substantial corpus of essen- 
tially qualitative theory which is applicable to pairs of 
simultaneous differential equations of this type 6'7. It will 
appear subsequently that by application of this theory it is 
possible to draw some significant conclusions concerning 
the behaviour of the model assumed here. 

Representation of  hehaviour o f  reaction system as a trajec- 
tory in an N-N m phase plane 

In the theory referred to above, N and Nm are regarded 
as defining orthogonal Cartesian axes in a two-dimensional 
space, called the 'phase plane'. Solutions of a given pair of 
differential equations will trace out paths, called 'trajec- 
tories', in this plane as time elapses. The steady state for the 
reaction is represented by the point for which dN/dT = 0 and 
dNm/dT = 0. Thus the coordinates (N, Nm) of the point 
which represents the steady state must obey the relation- 
ships: 

/Vmo- ~ m  3'/Vm - 0 (6) 

These two equations are readily transformed into the 
pair: 

Nm - Nm o - ~ 
/3 (7) 

and 

odV 2 
/Vm - (8) 

Thus the points in the phase plane which represent steady 
states for the reaction system are the points of intersection 
of the two curves: 

NmNmo -N 
/3 (9) 

and 

3,/Vm olN 2 
iV = 0 (5) N m - 

K Z m + e N  7 - N  
(10) 

and These two curves are illustrated in Figure la (for the case 

I 

N% / ~ I 
~ I 

N °'N2 ~ I N (zN2 \ . m=7 -N 

\ 
(N'Nm) i 

-< 
I 

Nm 

! I  ~ a N  2 
I ~INm= ¥--N 

i Branch B 

I 

a II b 
Figure I Illustrating the loci of the curves: Nmo = (Nmo -- NIl3 and N m = cvN2/13,-N) in the N--N m phase plane for the two cases: (a) 
"7 < Nmo; (b) 3' > Nm 0 
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3  ̀<Nine) and bTgure lb (for the case 3  ̀>Nm0 ). The curve 
represented by equation (10) has two branches (marked A 
and B in Figure 1). However, only branch A need be con- 
sidered, since only points lying in the first quadrant (N, 
N m t> 0) have physical significance, and branch B lies 
entirely in the fourth quadrant. 

Thus the points in the phase plane which represent 
physically-realizable steady states for the reaction system 
are the points of intersection of the curve (9) and the branch 
A of curve (10) which lies in the first quadrant. In accor- 
dance with expectation, there is only one such point. 
Furthermore, limits can be set for the values of 1V and N m 
as follows: 

0 ~< N ~< min (Nmo, 3`) (11) 

and 

0 < N  m ~Nmo/3 (12) 

where rain (Nmo, 3`) denotes the lesser of Nmo and % 
Some information concerning the nature of the steady- 

state point (N, Nm) can be obtained by examining the 
behaviour of the trajectories on the boundaries of the 
physically-relevant region, i.e., a region bounded by the 
straight lines N = O, N m = O, and the first quadrant of the 
circle N 2 + N2m = p2, where p is large compared with either 
Nrno or Nrno/3. It can be argued on general physical grounds 
that all the trajectories must be directed inwards at the 
boundaries of the physically-relevant region, because it can 
be surmized that systems which are represented by points 
remote from (N, Nm) must always tend to move towards 
the state represented by the point (iV, Nm). The truth of 
this conclusion can be confirmed from equations (3) and 
(4) if a is constant, by considering the signs of dN/dr and 
dNm/dr at various points on the boundary of the region, 
and hence inferring from the ratio dNm/dN, = (dNm/dr)/ 
(dN/dr), what must be the slopes of the trajectories at the 
various points on the boundary. A consequence of the 
trajectories being always directed inwards at the boundaries 
is that the system of trajectories must have a Poincar~ index 
of +1. This in turn implies that the steady-state point must 
be a focus, a node, or a centre. 

Behaviour of reaction system in vicinity of steady-state 
point 

We now introduce the new variables 

O = N - IV and O= Nm - Nm (13) 

The introduction of these variables is equivalent to trans- 
forming the critical point to the origin. In terms of these 
new variables, equations (3) and (4) become: 

dO 3̀ ((,b + }Vm) 

dr ~ + Nrn + O40 + N) 
- ( 0  +77) (14) 

and 

expressions for dO/dr and dO/dr about the point 0 = 0 = 0, 
and neglect terms in 0 and 0 of higher order than the first. 
Taking into account the relationships (7) and (8) (or equiva- 
lently that both dO/dt and dO/dt must be zero at the point 
0 = 0 = 0), it is found that 

~- 1 + - - -  0 + _ ~  1 -  0 (16) 
dr 3`Nm Arm 

and 

dq5 c~1V2 ( N2 -~ } 
- - 0 +  3 4~ (17) 

dr 3' Nm 3̀Nm Nm 

Thus the behaviour of the reaction system in the vicinity 
of the steady state can be approximately described by the 
above two simultaneous linear first-order ordinary differen- 
tial equations in 0 and ~b. The solutions to these equations 
can be written down immediately in terms of the eigenvalues 
?̀ 1 and ?'2, and the corresponding column eigenvectors, 
[All and [,421, of the matrix: 

- -  1 3 '  ]Vm jV m 1 - 

:V2 :V 

k3`Nm 3` Vm 3 

The general 
( in matrix form) 

[ :]= Cl[Al]eMr + c2[A2]e ~2r 

where e 1 and e 2 are arbitrary constants. 
The nature of the variation of 0 and 0 with r is deter- 

mined by ?̀ 1 and ?`2- These in turn are the roots of the 

solution to the equations (16) and (17) is then 

(18) 

determinantal equation: 

adV 2 ]v { A7 ] 
-1  X 1 / 

/ 

= 0  
Ct~ 2 ]V 2 /V 

L 3̀  Nm 3̀ Nm Nm 3 -  X 

(19) 

From this, it follows that: 

XlX2 = (cq3- 1) 3`Nrn +~--~-Nm +3 (20) 

from which ?`1?`2 :> 0, i.e. the real parts of Xl and X2 have 
the same sign. That ?`17`2 :> 0 follows from equation (20) 
because/3 = 1 + kiT, is always >1, and a = k3/k 2, is also 
always >1 (since the surface area of a particle must always 
be greater than that of a surfactant miceile). It also follows 
from equation (19) that: 

d¢ 3`(0 + ~Vm) 
dr- = N m ° - 3 ( O + N m ) - o + N m  +a(O +Fr) (15) 

p~ jV 2 } 
?`1+?`2 = -  1 + f l + = + - - ( a - -  1) (21) 

Nm 7Nm 

In order to examine the behaviour of the trajectories in 
the vicinity of the, steady-state point, we expand these 

so that ?̀ 1 + ?`2 < 0. Thus taken with ?`1?`2 > 0, this gives 
that ?`1 and ?`2 are both <0  ifX 1 and ?`2 are real, and that 
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their real parts are negative if XI and ~2 are complex. In 
either event, equation (18) shows that the steady state is 
always stable, since the trajectory for any system slightly 
disturbed from the steady state must always be such that 
the system tends to return to the steady state. This conclu- 
sion follows regardless of the values ofN,  N m, or any of the 
parameters which govern the behaviour of the assumed 
model. 

We have therefore reached the conclusion that the model 
considered here carries the following implications: 

(i) all the trajectories at the boundaries of the physically- 
relevant region of the N -  N m phase plane are directed 
inwards; 

(ii) the steady-state is stable. 
The second of these conclusions rules out the possibility 
that the point representing the steady state can be surroun- 
ded by a closed trajectory of small amplitude. We there- 
fore reach the conclusion that the model considered here 
does not permit the possibility of a periodic approach to 
the steady state. This does not mean that periodic solutions 
are necessarily excluded from the whole of the physically- 
relevant region, but it does mean that the phase plane would 
have to have a more complex structure than has been 
envisaged hitherto if it is to accommodate such closed 
trajectories. Indeed, taking conclusions (i) and (ii) above 
together, it seems inherently unlikely that the model allows 
periodic fluctuations of any magnitude about any point of 
the phase plane. However, there is a further general theorem 
which we can apply in order to show that the model con- 
sidered here does not allow the possibility of sustained cyclic 
behaviour in any part of the physically-relevant region. 
However, before proceeding to these considerations, it is 
desirable to emphasize the following points concerning the 
preceding analysis. 

(i) The linearized equations which have been used above 
are valid only in the immediate vicinity of the steady-state 
point. The behaviour of real reaction systems which are 
apparently quite close to the steady-state may not in fact be 
accurately represented by the linearized equations. 

(ii) The above analysis, and the conclusions which have 
been drawn from it, may be invalid if the value of k 3 is not 
constant but fluctuates sufficiently over the region in the 
vicinity of the steady-state point. 

(iii) The elimination of closed trajectories in the phase 
plane, corresponding to sustained oscillations, does not 
exclude the possibility of the existence of spiral trajectories 
into the steady-state point. A spiral trajectory of this type 
would correspond to damped oscillations about the steady 
state. 

Possibility o f  sustained oscillations 

The general theorem to which we have referred above is 
that of Dulac. This states that, for a system which is gov- 
erned by a pair of autonomous non-linear ordinary differen- 
tial equations: 

dx dy 
dt P(x ,y ) ,  --~ Q ( x , y )  (22) 

there cannot be any closed trajectories within a region R of 
the phase plane if the function: 

ae aQ 
ax ay 

is of constant sign throughout R. 
For a system which conforms to the model being con- 

sidered here, the relevant equations are (3) and (4). We note 
that the right-hand sides of these equations are well-behaved 
at all points in the phase plane except those which lie on the 
line N m = - a N  (shown in Figures la and ib),  but this line 
does not pass through the region which has physical signifi- 
cance. The theorem may therefore be applied to all points 
within the physically-relevant region except the single point 
N = N m = 0. Denoting the right-hand sides of equations (3) 
and (4) by P(N, Nm) and Q(N, Nm) , respectively, we have: 

OP o~TN m 

ON (N m + otN) 2 
1, <0  (23) 

and 

OQ a N  

ONto -~  - (Nm + otN)2, <0  (24) 

It therefore follows that both aP/aN and aQ/ON m are nega- 
tive for all physically-relevant values of N and N m. We note 
that the signs of these quantities are not affected by the 
magnitude of a(=k3/k2), since a must always be positive. 
We therefore conclude that, if k 3 (and therefore a) is 
assumed to be constant for all values of N and Nm, as is the 
case for the model we are considering, the function: 

aP aQ 
+ - -  

3N aN m 

is negative throughout the entire region of physically- 
relevant values of N and Nm. The physically-significant 
region of the phase plane cannot therefore contain closed 
trajectories, and the model does not allow the possibility 
of sustained cyclic behaviour of any reaction system which 
conforms to it. 

EFFECTS OF POSSIBLE MODIFICATIONS TO THE 
MODEL 

It appears that none of the more obvious modifications 
which might be made to the model affects the general con- 
clusion reached in the previous section that the N - N  m 
phase plane cannot contain closed trajectories. 

A possible cause for cyclic fluctuations in particle number 
would be the occurrence of particle agglomeration. The 
simplest possible case to envisage is that in which particle 
agglomeration is kinetically of second order in particle 
number. Equation (3) would then be modified to become 
of the form: 

dN 7N m 

dr N m + a N  
N - eN  2 (25) 

where e is a constant. It is readily shown .that aP/aN is~till 
always negative. A refinement of this modified model would 
be one which makes allowance for the fact that the prob- 
ability of two colliding particles subsequently agglomerating 
almost certainly depends upon the degree of saturation of 
the particle surfaces with surfactant. If this is the case, 
then the parameter e will vary with the position of the 
reaction system in the phase plane. A plausible way to make 
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allowance for this effect would be to set e = e 'N/N m, where 
e' is a constant. The contribution to dN/dr from particle 
agglomeration would now be of  the form e'N3/Nm, but this 
will not affect the sign of  ~P/SN. 

We also note that our conclusions are unaffected if equa- 
tion (4) is replaced by an equation of  the form: 

possibilities that certain surfactants are known to affect 
the rate of  thermal decomposition of initiators such as 
potassium persulphate. 

CONCLUSIONS 

dNm TNm 
- N m o  - ~ ' N  (26) 

dr N m + a N  

since OQ/ON m is still negative. The physical significance o f  
this modification is, however, not entirely clear. 

A further possibility is that periodic fluctuations become 
possible if the quantity k 3 (and therefore a) varies signifi- 
cantly with the position of~he reaction system in the 
N - N  m phase plane. If  periodic fluctuations did arise from 
this cause, they would presumably have to be of large ampli- 
tude, in order that significant changes in k 3 could occur in 
the course if the system traversing the closed trajectories 
implied by periodic solutions. Furthermore, the conclu- 
sions which have so far been reached concerning the nature 
of the N - N  m phase plane suggest that, in order to ensure 
continuity of the trajectories, there would have to be at 
least two periodic solutions of large amplitude if there were 
one. One of  the two, that of lesser amplitude, would have 
to be unstable, and the other, that of  greater amplitude, 
would have to be stable'and its trajectory would also have 
to surround that which represented the unstable solution. 
A N - N  m phase plane of this rather complex structure 
seems to be inherently unlikely on physical grounds. 

Still further possibilities are that (i) periodic fluctuations 
might become possible if allowance is made for the first- 
order loss of radicals from reaction loci by diffusion into the 
external phase; and (ii) periodic fluctuations might arise 
from variations in the rate of  production of  radicals caused 
by variations in the concentration of monomolecular sur- 
factant molecules. It is relevant to the second of  these 

Having examined a simple model for a continuous emulsion 
polymerization reaction, we conclude that this model does 
not permit the possibility of  either periodic fluctuations in 
rate of polymerization in the vicinity of the steady state, nor 
of  sustained fluctuations in rate of  polymerization in any 
physically-realizable condition. Nor are sustained oscilla- 
tions possible in reaction systems which conform to certain 
of the more obvious variants of  the model. To the extent 
that reproducible periodic fluctuations in rate of  polymeriza- 
tion are observed in continuous emulsion polymerization 
reactions, the explanation must be sought elsewhere than in 
conformity to the model considered here. If it is clearly 
established that the fluctuations do not arise from mecha- 
nical causes, then it appears that it will be necessary to 
propose a markedly different model for the reaction than 
that which has been examined in this paper. 
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